Solutions to Problem 1.

a. $\operatorname{Pr}\{Y=0\}=\operatorname{Pr}\{Y=0$ and $X=1\}+\operatorname{Pr}\{Y=0$ and $X=2\}+\operatorname{Pr}\{Y=0$ and $X=3\}$

$$
=\frac{1}{3}+\frac{1}{4}+\frac{3}{16}=\frac{37}{48} \approx 0.7708
$$

b. $\operatorname{Pr}\{Y=1 \mid X=2\}=\frac{\operatorname{Pr}\{Y=1 \text { and } X=2\}}{\operatorname{Pr}\{X=2\}}=\frac{\operatorname{Pr}\{Y=1 \text { and } X=2\}}{\operatorname{Pr}\{Y=0 \text { and } X=2\}+\operatorname{Pr}\{Y=1 \text { and } X=2\}+\operatorname{Pr}\{Y=2 \text { and } X=2\}}$

$$
=\frac{\frac{1}{12}}{\frac{1}{4}+\frac{1}{12}+0}=\frac{1}{4}
$$

c. $\operatorname{Pr}\{X=1$ and $Y=2\}$ is the probability that Professor Right is asked 1 question and answers 2 questions incorrectly, which is impossible.

Solutions to Problem 2.

a. These probabilities are given to us in the problem:

$$
\operatorname{Pr}\{M=1\}=0.20 \quad \operatorname{Pr}\{M=2\}=0.30 \quad \operatorname{Pr}\{M=3\}=0.50
$$

b. These probabilities are given to us in the problem:

$$
\operatorname{Pr}\{D=1 \mid M=1\}=0.01 \quad \operatorname{Pr}\{D=1 \mid M=2\}=0.02 \quad \operatorname{Pr}\{D=1 \mid M=3\}=0.03
$$

c. Using the law of total probability:

$$
\begin{aligned}
\operatorname{Pr}\{D=1\} & =\operatorname{Pr}\{D=1 \mid M=1\} \operatorname{Pr}\{M=1\}+\operatorname{Pr}\{D=1 \mid M=2\} \operatorname{Pr}\{M=2\}+\operatorname{Pr}\{D=1 \mid M=3\} \operatorname{Pr}\{M=3\} \\
& =0.01(0.20)+0.02(0.30)+0.03(0.50)=0.023
\end{aligned}
$$

Solutions to Problem 3.

a. First, let's compute

$$
\operatorname{Pr}\{Z=2\}=\operatorname{Pr}\{Z=2 \text { and } M=0\}+\operatorname{Pr}\{Z=2 \text { and } M=1\}+\operatorname{Pr}\{Z=2 \text { and } M=2\}=0.25
$$

The conditional probabilities of M given $Z=2$ are:

$$
\begin{aligned}
& \operatorname{Pr}\{M=0 \mid Z=2\}=\frac{\operatorname{Pr}\{M=0 \text { and } Z=2\}}{\operatorname{Pr}\{Z=2\}}=\frac{0.10}{0.25}=\frac{2}{5} \\
& \operatorname{Pr}\{M=1 \mid Z=2\}=\frac{\operatorname{Pr}\{M=1 \text { and } Z=2\}}{\operatorname{Pr}\{Z=2\}}=\frac{0.08}{0.25}=\frac{8}{25} \\
& \operatorname{Pr}\{M=2 \mid Z=2\}=\frac{\operatorname{Pr}\{M=2 \text { and } Z=2\}}{\operatorname{Pr}\{Z=2\}}=\frac{0.07}{0.25}=\frac{7}{25}
\end{aligned}
$$

b. $E[M \mid Z=2]=0 \cdot \operatorname{Pr}\{M=0 \mid Z=2\}+1 \cdot \operatorname{Pr}\{M=1 \mid Z=2\}+2 \cdot \operatorname{Pr}\{M=2 \mid Z=2\}=\frac{22}{25}$
c. M and Z are not independent: if they were, we would have $\operatorname{Pr}\{M=1\}=\operatorname{Pr}\{M=1 \mid Z=3\}$.

Solutions to Problem 4.

a.

$$
\begin{aligned}
\operatorname{Pr}\{X=4 \mid X \neq 1\} & =\frac{\operatorname{Pr}\{X=4 \text { and } X \neq 1\}}{\operatorname{Pr}\{X \neq 1\}} \\
& =\frac{\operatorname{Pr}\{X=4\}}{\operatorname{Pr}\{X \neq 1\}} \\
& =\frac{0.1}{0.3+0.5+0.1}=\frac{1}{9}
\end{aligned}
$$

b.

$$
\begin{aligned}
\operatorname{Pr}\{X=4 \mid X \neq 1 \text { and } X \neq 2\} & =\frac{\operatorname{Pr}\{X=4 \text { and } X \neq 1 \text { and } X \neq 2\}}{\operatorname{Pr}\{X \neq 1 \text { and } X \neq 2\}} \\
& =\frac{\operatorname{Pr}\{X=4\}}{\operatorname{Pr}\{X \neq 1 \text { and } X \neq 2\}} \\
& =\frac{0.1}{0.5+0.1}=\frac{1}{6}
\end{aligned}
$$

c.

$$
\begin{aligned}
\operatorname{Pr}\{X=2 \mid X \leq 2\} & =\frac{\operatorname{Pr}\{X=2 \text { and } X \leq 2\}}{\operatorname{Pr}\{X \leq 2\}} \\
& =\frac{\operatorname{Pr}\{X=2\}}{\operatorname{Pr}\{X \leq 2\}} \\
& =\frac{0.3}{0.1+0.3}=\frac{3}{4}
\end{aligned}
$$

Solutions to Problem 5.

a.

$$
\begin{aligned}
\operatorname{Pr}\left\{X_{2}=1 \mid X_{1}=0\right\} & =\frac{\operatorname{Pr}\left\{X_{2}=1 \text { and } X_{1}=0\right\}}{\operatorname{Pr}\left\{X_{1}=0\right\}} \\
& =\frac{0.05}{0.80}=0.0625
\end{aligned}
$$

b.

$$
\begin{aligned}
\operatorname{Pr}\left\{X_{2}=1 \mid X_{1}=1\right\} & =\frac{\operatorname{Pr}\left\{X_{2}=1 \text { and } X_{1}=1\right\}}{\operatorname{Pr}\left\{X_{1}=1\right\}} \\
& =\frac{0.10}{0.20}=0.50
\end{aligned}
$$

c. X_{1} and X_{2} are dependent because $\operatorname{Pr}\left\{X_{2}=1 \mid X_{1}=0\right\} \neq \operatorname{Pr}\left\{X_{2}=1 \mid X_{1}=1\right\}$.
d.

$$
\begin{aligned}
\text { expected profit } & =100 \operatorname{Pr}\left\{X_{2}=0 \mid X_{1}=1\right\}+(-20) \operatorname{Pr}\left\{X_{2}=1 \mid X_{1}=1\right\} \\
& =100(1-0.50)-20(0.50)=40
\end{aligned}
$$

